Influence of Soil Moisture in Semi-Fixed Sand Dunes of the Tengger Desert, China, Based on PLS-SEM and SHAP Models

Author:

Qi Haidi1ORCID,Zhang Dinghai1ORCID,Zhang Zhishan2ORCID,Zhao Youyi1,Shi Zhanhong1

Affiliation:

1. Centre for Quantitative Biology, College of Science, Gansu Agricultural University, Lanzhou 730070, China

2. Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract

Drought stress significantly limits the function and stability of desert ecosystems. This research examines the distribution characteristics of soil moisture across different microtopographic types in the semi-fixed dunes located at the southeastern edge of the Tengger Desert. We constructed a path model to examine the direct and indirect impacts of topography, shrub vegetation, and herbaceous vegetation. The data encompassed soil moisture, topography, and vegetation variables, which were collected from field experiments to ensure their accuracy and relevance. Furthermore, SHAP models based on machine learning algorithms were utilized to elucidate the specific mechanisms through which key factors influence soil moisture. The results of the descriptive statistics indicate the highest surface soil moisture content, recorded at 1.21%, was observed at the bottom of the dunes, while the leeward slopes demonstrated elevated moisture levels in the middle and deep soil layers, with measurements of 2.25% and 2.43%, respectively. Soil moisture at different depths initially decreases and then increases with greater herbaceous cover and slope direction, while surface soil moisture follows a similar trend in terms of height difference, with 3 m serving as the boundary for trend changes. Middle and deep soil moistures initially increase and then decrease with greater biomass and shrub coverage, with 30 g and 40% serving as the boundary for trend changes respectively. This study elucidates the spatial distribution patterns and influencing factors of soil moisture in semi-fixed dunes, offering valuable references for the establishment of sand-stabilizing vegetation in desert regions.

Funder

National Natural Science Foundation of China

Gansu Science and Technology Program, the CAS ‘Light of West China’ Program

Gansu Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3