Multi-Feature Automatic Extraction for Detecting Obstructive Sleep Apnea Based on Single-Lead Electrocardiography Signals

Author:

Zhou Yu1ORCID,Kang Kyungtae2ORCID

Affiliation:

1. Department of Computer Science and Engineering, Major in Bio Artificial Intelligence, Hanyang University, Ansan 15588, Republic of Korea

2. Department of Artificial Intelligence, Hanyang University, Ansan 15588, Republic of Korea

Abstract

Obstructive sleep apnea (OSA), a prevalent sleep disorder, is intimately associated with various other diseases, particularly cardiovascular conditions. The conventional diagnostic method, nocturnal polysomnography (PSG), despite its widespread use, faces challenges due to its high cost and prolonged duration. Recent developments in electrocardiogram-based diagnostic techniques have opened new avenues for addressing these challenges, although they often require a deep understanding of feature engineering. In this study, we introduce an innovative method for OSA classification that combines a composite deep convolutional neural network model with a multimodal strategy for automatic feature extraction. This approach involves transforming the original dataset into scalogram images that reflect heart rate variability attributes and Gramian angular field matrix images that reveal temporal characteristics, aiming to enhance the diversity and richness of data features. The model comprises automatic feature extraction and feature enhancement components and has been trained and validated on the PhysioNet Apnea-ECG database. The experimental results demonstrate the model’s exceptional performance in diagnosing OSA, achieving an accuracy of 96.37%, a sensitivity of 94.67%, a specificity of 97.44%, and an AUC of 0.96. These outcomes underscore the potential of our proposed model as an efficient, accurate, and convenient tool for OSA diagnosis.

Funder

Korean government

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pre-Emptive Sleep Apnea Detection Using Deep Learning;2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT);2024-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3