Abstract
This study assesses the change of the seasonal runoff characteristics in 98 catchments in central Europe between the reference period of 1981–2010, and in the near future (2011–2040), mid future (2041–2070) and far future (2071–2099). Therefore, a large ensemble of 50 hydrological simulations featuring the model WaSiM-ETH driven by a 50-member ensemble of the Canadian Regional Climate Model, version 5 (CRCM5) under the emission scenario Representative Concentration Pathway (RCP 8.5) is analyzed. A hierarchical cluster analysis is applied to group the runoff characteristics into six flow regime classes. In the study area, (glacio-)nival, nival (transition), nivo-pluvial and three different pluvial classes are identified. We find that the characteristics of all six regime groups are severely affected by climate change in terms of the amplitude and timing of the monthly peaks and sinks. According to our simulations, the monthly peak of nival regimes will occur earlier in the season and the relative importance of rainfall increases towards the future. Pluvial regimes will become less balanced with higher normalized monthly discharge during January to March and a strong decrease during May to October. In comparison to the reference period, 8% of catchments will shift to another regime class until 2011–2040, whereas until 2041–2070 and 2071–2099, 23% and 43% will shift to another class, respectively.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献