Climate change impacts on regional fire weather in heterogeneous landscapes of central Europe

Author:

Miller JuliaORCID,Böhnisch AndreaORCID,Ludwig Ralf,Brunner Manuela I.ORCID

Abstract

Abstract. Wildfires have reached an unprecedented scale in the Northern Hemisphere. The summers of 2022 and 2023 demonstrated the destructive power of wildfires, especially in North America and southern Europe. Global warming leads to changes in fire danger. Specifically, fire seasons are assumed to become more extreme and will extend to more temperate regions in northern latitudes in the future. However, the extent to which the seasonality and severity of fire danger in regions of central Europe will change in the future remains to be investigated. Multiple studies claim that natural variability and model uncertainty hide the trend of increasing fire danger in multi-model climate simulations for future potentially fire-prone areas. Such a trend might be isolated with single-model initial-condition large ensembles (SMILEs), which help scientists to distinguish the forced response from natural variability. So far, the SMILE framework has only been applied for fire danger estimation on a global scale. To date, only a few dynamically downscaled regional SMILEs exist, although they enhance the spatial representation of climatic patterns on a regional or local scale. In this study, we use a regional SMILE of the Canadian Regional Climate Model version 5 Large Ensemble (CRCM5-LE) over a region in central Europe under the RCP8.5 (Representative Concentration Pathway) scenario from 1980 to 2099 to analyze changes in fire danger in an area that is currently not fire prone. We use the Canadian Forest Fire Weather Index (FWI) as a fire danger indicator. The study area covers four heterogeneous landscapes, namely the Alps, the Alpine Foreland, the lowlands of the South German Escarpment, and the Eastern Mountain Ranges of the Bavarian Forest. We demonstrate that the CRCM5-LE is a dataset suitable for disentangling climate trends from natural variability in a multi-variate fire danger metric. Our results show the strongest increases in the median (50th) and extreme (90th) quantiles of the FWI in the northern parts (South German Escarpment and Eastern Mountain Ranges) of the study area in the summer months of July and August. There, high fire danger becomes the median condition by the end of the century, and levels of high fire danger occur earlier in the fire season. The southern parts (Alps and Alpine Foreland) are less strongly affected by changes in fire danger than the northern parts. However, these regions reach their time of emergence (TOE) in the early 2040s because of very low current fire danger. In the northern parts, the climate change trend exceeds natural variability only in the late 2040s. We find that today's 100-year FWI event will occur every 30 years by 2050 and every 10 years by the end of the century. Our results highlight the potential for severe future fire events in central Europe, which is currently not very fire prone, and demonstrate the need for fire management even in regions with a temperate climate.

Funder

Bayerisches Staatsministerium für Umwelt und Verbraucherschutz

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3