Oxidative Stress in Endurance Cycling Is Reduced Dose-Dependently after One Month of Re-Esterified DHA Supplementation

Author:

de Salazar LydiaORCID,Torregrosa-García AntonioORCID,Luque-Rubia Antonio J.ORCID,Ávila-Gandía VicenteORCID,Domingo Joan CarlesORCID,López-Román F. JavierORCID

Abstract

Docosahexaenoic acid (DHA) supplementation can reduce exercise-induced oxidative stress generated during long aerobic exercise, with the minimum dose yet to be elucidated for physically active subjects. In this study, we performed a dose finding with re-esterified DHA in triglyceride form in a randomized double-blind parallel trial at different doses (350, 1050, 1750, and 2450 mg a day) for 4 weeks in males engaged in regular cycling (n = 100, 7.6 ± 3.7 h/week). The endogenous antioxidant capacity of DHA was quantified as a reduction in the levels of the oxidative stress marker 8-hydroxy-2′-deoxyguanosine (8-OHdG) recollected in 24-h urine samples after 90 min of constant load cycling before and after intervention. To ascertain incorporation of DHA, erythrocyte polyunsaturated fatty acid (PUFA) composition was compared along groups. We found a dose-dependent antioxidant capacity of DHA from 1050 mg with a trend to neutralization for the highest dose of 2450 mg (placebo: n = 13, F = 0.041; 350 mg: n = 10, F = 0.268; 1050 mg: n = 11, F = 7.112; 1750 mg: n = 12, F = 9.681; 2450 mg: n = 10, F = 15.230). In the erythrocyte membrane, the re-esterified DHA increased DHA and omega-3 percentage and decreased omega 6 and the omega-6 to omega-3 ratio, while Eicosapentaenoic acid (EPA) and PUFA remained unchanged. Supplementation of re-esterified DHA exerts a dose-dependent endogenous antioxidant property against moderate-intensity long-duration aerobic exercise in physically active subjects when provided at least 1050 mg a day for 4 weeks.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3