A Novel Framework for Image Matching and Stitching for Moving Car Inspection under Illumination Challenges

Author:

El Saer Andreas1,Grammatikopoulos Lazaros1ORCID,Sfikas Giorgos1ORCID,Karras George2,Petsa Elli1

Affiliation:

1. Department of Surveying and Geoinformatics Engineering, University of West Attica, 12243 Athens, Greece

2. School of Rural, Surveying and Geoinformatics Engineering, National Technical University of Athens, 15780 Athens, Greece

Abstract

Vehicle exterior inspection is a critical operation for identifying defects and ensuring the overall safety and integrity of vehicles. Visual-based inspection of moving objects, such as vehicles within dynamic environments abounding with reflections, presents significant challenges, especially when time and accuracy are of paramount importance. Conventional exterior inspections of vehicles require substantial labor, which is both costly and prone to errors. Recent advancements in deep learning have reduced labor work by enabling the use of segmentation algorithms for defect detection and description based on simple RGB camera acquisitions. Nonetheless, these processes struggle with issues of image orientation leading to difficulties in accurately differentiating between detected defects. This results in numerous false positives and additional labor effort. Estimating image poses enables precise localization of vehicle damages within a unified 3D reference system, following initial detections in the 2D imagery. A primary challenge in this field is the extraction of distinctive features and the establishment of accurate correspondences between them, a task that typical image matching techniques struggle to address for highly reflective moving objects. In this study, we introduce an innovative end-to-end pipeline tailored for efficient image matching and stitching, specifically addressing the challenges posed by moving objects in static uncalibrated camera setups. Extracting features from moving objects with strong reflections presents significant difficulties, beyond the capabilities of current image matching algorithms. To tackle this, we introduce a novel filtering scheme that can be applied to every image matching process, provided that the input features are sufficient. A critical aspect of this module involves the exclusion of points located in the background, effectively distinguishing them from points that pertain to the vehicle itself. This is essential for accurate feature extraction and subsequent analysis. Finally, we generate a high-quality image mosaic by employing a series of sequential stereo-rectified pairs.

Funder

European Union’s Horizon h2020

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3