Abstract
Detection and localization of the dents on a vehicle body that occurs during manufacturing is critical to achieve the appearance quality of a new vehicle. This study proposes a region-based convolutional neural network (R-CNN) to detect and localize dents for a vehicle body inspection. For a better feature extraction, this study employed a lighting system, which can highlight dents on an image by projecting the Mach bands (bright-dark stripes). The R-CNN was trained using the highlighted images by the Mach bands, and heat-maps were prepared with the classification scores estimated from the R-CNN to localize dents. This study applied the proposed R-CNN to the inspection of dents on the surface of a car body and quantitatively analyzed its performances. The detection accuracy of the dents was 98.5% for the testing data set, and mean absolute error between the actual dents and estimated dents were 13.7 pixels, which were close to one another. The proposed R-CNN could be applied to detect and localize surface dents during the manufacture of vehicle bodies in the automobile industry.
Funder
National Research Foundation of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference27 articles.
1. Car body paint defect inspection using rotation invariant measure of the local variance and one-against-all support vector machine;Kamani
2. Inspection system based on artificial vision for paint defects detection on cars bodies;Armesto
3. Automated visual inspection of flat surface products using feature fusion;Tolba
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献