Detecting and Localizing Dents on Vehicle Bodies Using Region-Based Convolutional Neural Network

Author:

Park Sung Hyun,Tjolleng AmirORCID,Chang JoonhoORCID,Cha Myeongsup,Park Jongcheol,Jung Kihyo

Abstract

Detection and localization of the dents on a vehicle body that occurs during manufacturing is critical to achieve the appearance quality of a new vehicle. This study proposes a region-based convolutional neural network (R-CNN) to detect and localize dents for a vehicle body inspection. For a better feature extraction, this study employed a lighting system, which can highlight dents on an image by projecting the Mach bands (bright-dark stripes). The R-CNN was trained using the highlighted images by the Mach bands, and heat-maps were prepared with the classification scores estimated from the R-CNN to localize dents. This study applied the proposed R-CNN to the inspection of dents on the surface of a car body and quantitatively analyzed its performances. The detection accuracy of the dents was 98.5% for the testing data set, and mean absolute error between the actual dents and estimated dents were 13.7 pixels, which were close to one another. The proposed R-CNN could be applied to detect and localize surface dents during the manufacture of vehicle bodies in the automobile industry.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference27 articles.

1. Car body paint defect inspection using rotation invariant measure of the local variance and one-against-all support vector machine;Kamani

2. Inspection system based on artificial vision for paint defects detection on cars bodies;Armesto

3. Automated visual inspection of flat surface products using feature fusion;Tolba

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3