CX3CL1 Pathway as a Molecular Target for Treatment Strategies in Alzheimer’s Disease

Author:

Bivona Giulia1ORCID,Iemmolo Matilda2,Ghersi Giulio2ORCID

Affiliation:

1. Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy

2. Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy

Abstract

Alzheimer’s disease (AD) is a scourge for patients, caregivers and healthcare professionals due to the progressive character of the disease and the lack of effective treatments. AD is considered a proteinopathy, which means that aetiological and clinical features of AD have been linked to the deposition of amyloid β (Aβ) and hyperphosphorylated tau protein aggregates throughout the brain, with Aβ and hyperphosphorylated tau representing classical AD hallmarks. However, some other putative mechanisms underlying the pathogenesis of the disease have been proposed, including inflammation in the brain, microglia activation, impaired hippocampus neurogenesis and alterations in the production and release of neurotrophic factors. Among all, microglia activation and chronic inflammation in the brain gained some attention, with researchers worldwide wondering whether it is possible to prevent and stop, respectively, the onset and progression of the disease by modulating microglia phenotypes. The following key points have been established so far: (i) Aβ deposition in brain parenchyma represents repeated stimulus determining chronic activation of microglia; (ii) chronic activation and priming of microglia make these cells lose neuroprotective functions and favour damage and loss of neurons; (iii) quiescent status of microglia at baseline prevents chronic activation and priming, meaning that the more microglia are quiescent, the less they become neurotoxic. Many molecules are known to modulate the quiescent baseline state of microglia, attracting huge interest among scientists as to whether these molecules could be used as valuable targets in AD treatment. The downside of the coin came early with the observation that quiescent microglia do not display phagocytic ability, being unable to clear Aβ deposits since phagocytosis is crucial for Aβ clearance efficacy. A possible solution for this issue could be found in the modulation of microglia status at baseline, which could help maintain both neuroprotective features and phagocytic ability at the same time. Among the molecules known to influence the baseline status of microglia, C-X3-chemokine Ligand 1 (CX3CL1), also known as Fractalkine (FKN), is one of the most investigated. FKN and its microglial receptor CX3CR1 are crucial players in the interplay between neurons and microglia, modulating the operation of some neural circuits and the efficacy and persistence of immune response against injury. In addition, CX3CL1 regulates synaptic pruning and plasticity in the developmental age and in adulthood, when it strongly impacts the hippocampus neurogenesis of the adult. CX3CL1 has an effect on Aβ clearance and tau phosphorylation, as well as in microglia activation and priming. For all the above, CX3CL1/CX3CR1 signalling has been widely studied in relation to AD pathogenesis, and its biochemical pathway could hide molecular targets for novel treatment strategies in AD. This review summarizes the possible role of CX3CL1 in AD pathogenesis and its use as a potential target for AD treatment.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference67 articles.

1. Alzheimer’s disease;Scheltens;Lancet,2021

2. (2023, March 23). World Alzheimer Report 2022. Life after Diagnosis: Navigating Treatment, Care and Support. Available online: https://www.alzint.org/resource/world-alzheimer-report-2022/.

3. The changing prevalence and incidence of dementia over time—Current evidence;Wu;Nat. Rev. Neurol.,2017

4. Recent global trends in the prevalence and incidence of dementia, and survival with dementia;Prince;Alzheimers Res. Ther.,2016

5. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission;Livingston;Lancet,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3