Car-Following Modeling Incorporating Driving Memory Based on Autoencoder and Long Short-Term Memory Neural Networks

Author:

Fan PengchengORCID,Guo Jingqiu,Zhao HaifengORCID,Wijnands Jasper S.,Wang Yibing

Abstract

Although a lot of work has been conducted on car-following modeling, model calibration and validation are still a great challenge, especially in the era of autonomous driving. Most challengingly, besides the immediate benefit incurred with a car-following action, a smart vehicle needs to learn to evaluate the long-term benefits and become foresighted in conducting car-following behaviors. Driving memory, which plays a significant role in car-following, has seldom been considered in current models. This paper focuses on the impact of driving memory on car-following behavior, particularly, historical driving memory represents certain types of driving regimes and drivers’ maneuver in coordination with the variety of driving regimes. An autoencoder was used to extract the main features underlying the time-series data in historical driving memory. Long short-term memory (LSTM) neural network model has been employed to investigate the relationship between driving memory and car-following behavior. The results show that velocity, relative velocity, instant perception time (IPT), and time gap are the most relevant parameters, while distance gap is insignificant. Furthermore, we compared the accuracy and robustness of three patterns including various driving memory information and span levels. This study contributes to bridging the gap between historical driving memory and car-following behavior modeling. The developed LSTM methodology has the potential to provide personalized warnings of dangerous car-following distance over the next second.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3