Improving Accuracy and Reliability of Bluetooth Low-Energy-Based Localization Systems Using Proximity Sensors

Author:

Kolakowski MarcinORCID

Abstract

One of the functionalities which are desired in Ambient and Assisted Living systems is accurate user localization at their living place. One of the best-suited solutions for this purpose from the cost and energy efficiency points of view are Bluetooth Low Energy (BLE)-based localization systems. Unfortunately, their localization accuracy is typically around several meters and might not be sufficient for detection of abnormal situations in elderly persons behavior. In this paper, a concept of a hybrid positioning system combining typical BLE-based infrastructure and proximity sensors is presented. The proximity sensors act a supporting role by additionally covering vital places, where higher localization accuracy is needed. The results from both parts are fused using two types of hybrid algorithms. The paper contains results of simulation and experimental studies. During the experiment, an exemplary proximity sensor VL53L1X has been tested and its basic properties modeled for use in the proposed algorithms. The results of the study have shown that employing proximity sensors can significantly improve localization accuracy in places of interest.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3