Observability-Constrained Resampling-Free Cubature Kalman Filter for GNSS/INS with Measurement Outliers

Author:

Cui Bingbo1ORCID,Chen Wu2ORCID,Weng Duojie2,Wei Xinhua1,Sun Zeyu13,Zhao Yan4,Liu Yufei3ORCID

Affiliation:

1. School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China

2. Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China

3. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China

4. College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China

Abstract

Integrating global navigation satellite systems (GNSSs) with inertial navigation systems (INSs) has been widely recognized as an ideal solution for autonomous vehicle navigation. However, GNSSs suffer from disturbances and signal blocking inevitably, making the performance of GNSS/INSs degraded in the occurrence of measurement outliers. It has been proven that the sigma points-based Kalman filter (KF) performs better than an extended KF in cases where large prior uncertainty is present in the state estimation of a GNSS/INS. By modifying the sigma points directly, the resampling-free sigma point update framework (SUF) propagates more information excepting Gaussian moments of prescribed accuracy, based on which the resampling-free cubature Kalman filter (RCKF) was developed in our previous work. In order to enhance the adaptivity and robustness of the RCKF, the resampling-free SUF depending on dynamic prediction residue should be improved by suppressing the time-varying measurement outlier. In this paper, a robust observability-constrained RCKF (ROCRCKF) is proposed based on adaptive measurement noise covariance estimation and outlier detection, where the occurrence of measurement outliers is modelled by the Bernoulli variable and estimated with the state simultaneously. Experiments based on car-mounted GNSS/INSs are performed to verify the effectiveness of the ROCRCKF, and result indicates that the proposed algorithm outperforms the RCKF in the presence of measurement outliers, where the heading error and average root mean square error of the position are reduced from 1.96° and 6.38 m to 0.27° and 5.95 m, respectively. The ROCRCKF is robust against the measurement outliers and time-varying model uncertainty, making it suitable for the real-time implementation of GNSS/INSs in GNSS-challenged environments.

Funder

Natural Science Foundation of China

Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment

Primary Research & Development Plan of Jiangsu Province

Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs

University Grants Committee of Hong Kong under the scheme Research Impact Fund

Research Institute of Land and Space, Hong Kong Polytechnic University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3