The Winning Solution to the IEEE CIG 2017 Game Data Mining Competition

Author:

Guitart Anna,Chen Pei,Periáñez África

Abstract

Machine learning competitions such as those organized by Kaggle or KDD represent a useful benchmark for data science research. In this work, we present our winning solution to the Game Data Mining competition hosted at the 2017 IEEE Conference on Computational Intelligence and Games (CIG 2017). The contest consisted of two tracks, and participants (more than 250, belonging to both industry and academia) were to predict which players would stop playing the game, as well as their remaining lifetime. The data were provided by a major worldwide video game company, NCSoft, and came from their successful massively multiplayer online game Blade and Soul. Here, we describe the long short-term memory approach and conditional inference survival ensemble model that made us win both tracks of the contest, as well as the validation procedure that we followed in order to prevent overfitting. In particular, choosing a survival method able to deal with censored data was crucial to accurately predict the moment in which each player would leave the game, as censoring is inherent in churn. The selected models proved to be robust against evolving conditions—since there was a change in the business model of the game (from subscription-based to free-to-play) between the two sample datasets provided—and efficient in terms of time cost. Thanks to these features and also to their ability to scale to large datasets, our models could be readily implemented in real business settings.

Publisher

MDPI AG

Subject

General Economics, Econometrics and Finance

Reference47 articles.

1. Game Data Mining Competition 2017https://cilab.sejong.ac.kr/gdmc2017/

2. Reducing the Dimensionality of Data with Neural Networks

3. Learning Deep Architectures for AI

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3