Churn Prediction for High-Value Players in Freemium Mobile Games: Using Random Under-Sampling

Author:

Wang Guan-Yuan,

Abstract

Many game development companies use game data analysis for mining insights about users' behaviour and possible product growth. One of the most important analysis tasks for game development is user churn prediction. Effective churn prediction can help hold users in the game by initiating additional actions for their engagement. We focused on high-value user churn prediction as it is of particular interest for any business to keep paying customers satisfied and engaged. We consider the churn prediction problem as a classification problem and conduct the random undersampling approach to address imbalanced class distribution between churners and active users. Based on our real-life data from a freemium casual mobile game, although the best model was chosen as the final classification algorithm for extracted data, we can definitely say there is no general solution to the stated problem. Model performance highly depends on the churn definition, user segmentation and feature engineering, it is therefore necessary to have a custom approach to churn analysis in each specific case.

Publisher

Czech Statistical Office

Subject

Statistics, Probability and Uncertainty,Economics and Econometrics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3