Abstract
In this work, we demonstrated a heterojunction Si solar cell utilizing chemically grown titanium oxide (TiOx) as an electron-selective contact layer at its rear surface. With TiOx, the rear surface was passivated to reduce carrier recombination. The reverse saturation current, which is an indicator of carrier recombination, exhibited a 4.4-fold reduction after placing a TiOx layer on the rear surface. With reduced recombination, the open-circuit voltage increased from 433 mV to 600 mV and consequently, the power conversion efficiency (PCE) increased from 9.57 to 14.70%. By X-ray photoemission spectroscopy, the surface passivation was attributed to a silicon oxide interfacial layer formed during the chemical growth process. This passivation results in a 625 cm/s surface recombination velocity for the TiOx-passivated Si surface, which is 2.4 times lower than the sample without TiOx, ensuring the carriers pass through the rear contact without extensive recombination. According to these results, the band alignment for the heterojunction solar cell with and without a TiOx rear contact layer was plotted, the reduced interfacial recombination and the electron and hole blocking structure are the main reasons for the observed efficiency enhancement.
Funder
Ministry of Education, Taiwan
Ministry of Science and Technology (MOST), Taiwan
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献