An Ultra-Compact and Low-Cost LAMP-Based Virus Detection Device

Author:

Guo Dong123ORCID,Ling Zhengrong3ORCID,Tang Yifeng23,Li Gen23,Zhang Tieshan23ORCID,Zhao Haoxiang3,Ren Hao23ORCID,Shen Yajing13ORCID,Yang Xiong3

Affiliation:

1. Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518000, China

2. Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China

3. Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong 999077, China

Abstract

Timely and accurate detection of viruses is crucial for infection diagnosis and treatment. However, it remains a challenge to develop a portable device that meets the requirement of being portable, powerless, user-friendly, reusable, and low-cost. This work reports a compact ∅30 × 48 mm portable powerless isothermal amplification detection device (material cost ∼$1 USD) relying on LAMP (Loop-Mediated Isothermal Amplification). We have proposed chromatographic-strip-based microporous permeation technology which can precisely control the water flow rate to regulate the exothermic reaction. This powerless heating combined with phase-change materials can maintain a constant temperature between 50 and 70 °C for a duration of up to 49.8 min. Compared with the conventional methods, it avoids the use of an additional insulation layer for heat preservation, greatly reducing the size and cost. We have also deployed a color card and a corresponding algorithm to facilitate color recognition, data analysis, and storage using a mobile phone. The experimental results demonstrate that our device exhibits the same limit of detection (LOD) as the ProFlex PCR for SARS-CoV-2 pseudovirus samples, with that for both being 103 copies/μL, verifying its effectiveness and reliability. This work offers a timely, low-cost, and easy way for respiratory infectious disease detection, which could provide support in curbing virus transmission and protecting the health of humans and animals, especially in remote mountainous areas without access to electricity or trained professionals.

Funder

Hong Kong RGC General Research Fund

National Natural Science Foundation of China (NSFC)/Research Grants Council (RGC) Joint Research Scheme

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3