A Novel Optimized iBeacon Localization Algorithm Modeling

Author:

Yu Zhengyu12,Chu Liu1,Shi Jiajia1ORCID

Affiliation:

1. School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China

2. Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia

Abstract

The conventional methods for indoor localization rely on technologies such as RADAR, ultrasonic, laser range localization, beacon technology, and others. Developers in the industry have started utilizing these localization techniques in iBeacon systems that use Bluetooth sensors to measure the object’s location. The iBeacon-based system is appealing due to its low cost, ease of setup, signaling, and maintenance; however, with current technology, it is challenging to achieve high accuracy in indoor object localization or tracking. Furthermore, iBeacons’ accuracy is unsatisfactory, and they are vulnerable to other radio signal interference and environmental noise. In order to address those challenges, our study focuses on the development of error modeling algorithms for signal calibration, uncertainty reduction, and interfered noise elimination. The new error modeling is developed on the Curve Fitted Kalman Filter (CFKF) algorithms. The reliability, accuracy, and feasibility of the CFKF algorithms are tested in the experiments. The results significantly show the improvement of the accuracy and precision with this novel approach for iBeacon localization.

Funder

National Natural Science Foundation of China

Fire and Rescue Bureau Research Program of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the accuracy of BLE indoor localization systems: An assessment survey;Computers and Electrical Engineering;2024-09

2. Experimental Testing of Received Signal Strength in Indoor Positioning System;2024 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA);2024-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3