Author:
Borah Deva K,Boucouvalas Anthony C,Davis Christopher C,Hranilovic Steve,Yiannopoulos Konstantinos
Abstract
Abstract
This article presents an overview of optical wireless (OW) communication systems that operate both in the short- (personal and indoor systems) and the long-range (outdoor and hybrid) regimes. Each of these areas is discussed in terms of (a) key requirements, (b) their application framework, (c) major impairments and applicable mitigation techniques, and (d) current and/or future trends. Personal communication systems are discussed within the context of point-to-point ultra-high speed data transfer. The most relevant application framework and related standards are presented, including the next generation Giga-IR standard that extends personal communication speeds to over 1 Gb/s. As far as indoor systems are concerned, emphasis is given on modeling the dispersive nature of indoor OW channels, on the limitations that dispersion imposes on user mobility and dispersion mitigation techniques. Visible light communication systems, which provide both illumination and communication over visible or hybrid visible/infrared LEDs, are presented as the most important representative of future indoor OW systems. The discussion on outdoor systems focuses on the impact of atmospheric effects on the optical channel and associated mitigation techniques that extend the realizable link lengths and transfer rates. Currently, outdoor OW is commercially available at 10 Gb/s Ethernet speeds for Metro networks and Local-Area-Network interconnections and speeds are expected to increase as faster and more reliable optical components become available. This article concludes with hybrid optical wireless/radio-frequency (OW/RF) systems that employ an additional RF link to improve the overall system reliability. Emphasis is given on cooperation techniques between the reliable RF subsystem and the broadband OW system.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Reference235 articles.
1. Gfeller F, Bapst U: Wireless in-house data communication via diffuse infrared radiation. Proc IEEE 1979, 67(11):1474-1486.
2. Infrared Data Association (IrDA)[http://www.irda.org]
3. Visible Light Communications Consortium[http://www.vlcc.net]
4. Chan VWS: Optical satellite networks. IEEE/OSA J Lightw Technol 2003, 21(11):2811-2827. 10.1109/JLT.2003.819534
5. IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. 1997.
Cited by
145 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献