Object-Based Tree Species Classification Using Airborne Hyperspectral Images and LiDAR Data

Author:

Wu YanshuangORCID,Zhang Xiaoli

Abstract

The identification of tree species is one of the most basic and key indicators in forest resource monitoring with great significance in the actual forest resource survey and it can comprehensively improve the efficiency of forest resource monitoring. The related research has mainly focused on single tree species without considering multiple tree species, and therefore the ability to classify forest tree species in complex stand is not clear, especially in the subtropical monsoon climate region of southern China. This study combined airborne hyperspectral data with simultaneously acquired LiDAR data, to evaluate the capability of feature combinations and k-nearest neighbor (KNN) and support vector machine (SVM) classifiers to identify tree species, in southern China. First, the stratified classification method was used to remove non-forest land. Second, the feature variables were extracted from airborne hyperspectral image and LiDAR data, including independent component analysis (ICA) transformation images, spectral indices, texture features, and canopy height model (CHM). Third, random forest and recursion feature elimination methods were adopted for feature selection. Finally, we selected different feature combinations and used KNN and SVM classifiers to classify tree species. The results showed that the SVM classifier has a higher classification accuracy as compared with KNN classifier, with the highest classification accuracy of 94.68% and a Kappa coefficient of 0.937. Through feature elimination, the classification accuracy and performance of SVM classifier was further improved. Recursive feature elimination method based on SVM is better than random forest. In the spectral indices, the new constructed slope spectral index, SL2, has a certain effect on improving the classification accuracy of tree species. Texture features and CHM height information can effectively distinguish tree species with similar spectral features. The height information plays an important role in improving the classification accuracy of other broad-leaved species. In general, the combination of different features can improve the classification accuracy, and the proposed strategies and methods are effective for the identification of tree species at complex forest type in southern China.

Publisher

MDPI AG

Subject

Forestry

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3