Abstract
Sentiment analysis refers to the algorithmic extraction of subjective information from textual data and—driven by the increasing amount of online communication—has become one of the fastest growing research areas in computer science with applications in several domains. Although sports events such as football matches are accompanied by a huge public interest and large amount of related online communication, social media analysis in general and sentiment analysis in particular are almost unused tools in sports science so far. The present study tests the feasibility of lexicon-based tools of sentiment analysis with regard to football-related textual data on the microblogging platform Twitter. The sentiment of a total of 10,000 tweets with reference to ten top-level football matches was analyzed both manually by human annotators and algorithmically by means of publicly available sentiment analysis tools. Results show that the general sentiment of realistic sets (1000 tweets with a proportion of 60% having the same polarity) can be classified correctly with more than 95% accuracy. The present paper demonstrates that sentiment analysis can be an effective and useful tool for sports-related content and is intended to stimulate the increased use of and discussion on sentiment analysis in sports science.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献