Soutcom: Real‐time sentiment analysis of Arabic text for football fan satisfaction using a bidirectional LSTM

Author:

Alfarhood Sultan1ORCID

Affiliation:

1. Department of Computer Science, College of Computer and Information Sciences King Saud University Riyadh Saudi Arabia

Abstract

AbstractIn the last few years, various topics, including sports, have seen social media platforms emerge as significant sources of information and viewpoints. Football fans use social media to express their opinions and sentiments about their favourite teams and players. Analysing these opinions can provide valuable information on the satisfaction of football fans with their teams. In this article, we present Soutcom, a scalable real‐time system that estimates the satisfaction of football fans with their teams. Our approach leverages the power of social media platforms to gather real‐time opinions and emotions of football fans and applies state‐of‐the‐art machine learning‐based sentiment analysis techniques to accurately predict the sentiment of Arabic posts. Soutcom is designed as a cloud‐based scalable system integrated with the X (formerly known as Twitter) API and a football data service to retrieve live posts and match data. The Arabic posts are analysed using our proposed bidirectional LSTM (biLSTM) model, which we trained on a custom dataset specifically tailored for the sports domain. Our evaluation shows that the proposed model outperforms other machine learning models such as Random Forest, XGBoost and Convolutional Neural Networks (CNNs) in terms of accuracy and F1‐score with values of 0.83 and 0.82, respectively. Furthermore, we analyse the inference time of our proposed model and suggest that there is a trade‐off between performance and efficiency when selecting a model for sentiment analysis on Arabic posts.

Funder

King Saud University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3