Modelling of Electromagnetic Energy Harvester with Rotational Pendulum Using Mechanical Vibrations to Scavenge Electrical Energy

Author:

Ambrożkiewicz Bartłomiej,Litak Grzegorz,Wolszczak PiotrORCID

Abstract

A concept of non-linear electromagnetic system with the rotational magnetic pendulum for energy harvesting from mechanical vibrations was presented. The system was stimulated by vertical excitation coming from a shaker. The main assumption of the system was the montage of additional regulated stationary magnets inside coils creating double potential well, and the system was made with a 3D printing technique in order to avoid a magnetic coupling with the housing. In validation process of the system, modelling of electromagnetic effects in different configurations of magnets positions was performed with the application of a finite element method (FEM) obtaining the value of magnetic force acting on the pendulum. A laboratory measurement circuit was built and an experiment was carried out. The voltage and power outputs were measured for different excitations in range of system operational frequencies found experimentally. The experimental results of the physical system with electrical circuit and numerical estimations of the magnetic field of a stationary magnet’s configuration were used to derive a mathematical model. The equation of motion for the rotational pendulum was used to prove the broadband frequency effect.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3