A review of piezoelectric–electromagnetic hybrid energy harvesters for different applications

Author:

Han Yuhang1ORCID,He Lipeng12ORCID,Sun Lei1,Wang Hongxin1,Zhang Zhonghua3ORCID,Cheng Guangming3

Affiliation:

1. School of Mechatronic Engineering, Changchun University of Technology 1 , Changchun, Jilin 130012, China

2. Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University 2 , Changchun, Jilin 130022, China

3. Institute of Precision Machinery, Zhejiang Normal University 3 , Jinhua, Zhejiang 321004, China

Abstract

Social progress is inseparable from the utilization of energy, signals of extreme consumption of fossil energy and energy crisis appear frequently around the world. Human beings are paying more and more attention to new technologies and the sustainable development of energy collection and conversion. The emergence of piezoelectric, electromagnetic, electrostatic, and triboelectric mechanisms provides a variety of effective methods for new environmental energy collection and conversion technologies. Among them, the piezoelectric–electromagnetic hybrid energy harvester (P-EHEH) has been widely studied due to its high output power, simple structure, and easy miniaturization. Continuous progress has been made in the research of P-EHEH through theoretical exploration, structural optimization, and performance improvement. This Review focuses on the review of P-EHEH at the application level. A detailed introduction summarizes the research status of P-EHEH applied to human body devices, monitoring sensors, and power supply devices, as well as the development status of back-end electronic modules and interface circuits. The future challenges and development prospects of P-EHEH are anticipated.

Funder

National Natural Science Foundation of China

Education Department of Jilin Province

Opening Project of the Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3