Abstract
The Internet of Things (IoT) has emerged as a new technological world connecting billions of devices. Despite providing several benefits, the heterogeneous nature and the extensive connectivity of the devices make it a target of different cyberattacks that result in data breach and financial loss. There is a severe need to secure the IoT environment from such attacks. In this paper, an SDN-enabled deep-learning-driven framework is proposed for threats detection in an IoT environment. The state-of-the-art Cuda-deep neural network, gated recurrent unit (Cu- DNNGRU), and Cuda-bidirectional long short-term memory (Cu-BLSTM) classifiers are adopted for effective threat detection. We have performed 10 folds cross-validation to show the unbiasedness of results. The up-to-date publicly available CICIDS2018 data set is introduced to train our hybrid model. The achieved accuracy of the proposed scheme is 99.87%, with a recall of 99.96%. Furthermore, we compare the proposed hybrid model with Cuda-Gated Recurrent Unit, Long short term memory (Cu-GRULSTM) and Cuda-Deep Neural Network, Long short term memory (Cu- DNNLSTM), as well as with existing benchmark classifiers. Our proposed mechanism achieves impressive results in terms of accuracy, F1-score, precision, speed efficiency, and other evaluation metrics.
Funder
China Fundamental Research Funds for the Central 321 Universities
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献