Affiliation:
1. Department of Cybersecurity Faculty of Computer & Information Technology, Jordan University of Science and Technology Irbid Jordan
2. Department of Cybersecurity King Hussein School of Computing Sciences, Prince Sumaya University for Technology Amman Jordan
Abstract
AbstractThe proliferating popularity of Internet of Things (IoT) devices has led to wide‐scale networked system implementations across multiple disciplines, including transportation, medicine, smart homes, and many others. This unprecedented level of interconnectivity has introduced new security vulnerabilities and threats. Ensuring security in these IoT settings is crucial for protecting against malicious activities and safeguarding data. Real‐time identification and response to potential intrusions and attacks are essential, and intrusion detection systems (IDS) are pivotal in this process. However, the dynamic and diverse nature of the IoT environment presents significant challenges to existing IDS solutions, which are often based on rule‐based or statistical approaches. Deep learning, a subset of artificial intelligence, has shown great potential to enhance IDS in IoT. Deep learning models can identify complex patterns and characteristics by utilizing artificial neural networks, automatically building hierarchical representations from data. This capability results in more precise and efficient intrusion detection in IoT‐based systems. The primary aim of this survey is to present an extensive overview of the current research on deep learning and IDS in the IoT domain. By examining existing literature, discussing mainstream datasets, and highlighting current challenges and potential prospects, this survey provides valuable insights into the prevailing scenario and future directions for using deep learning in IDS for IoT. The findings from this research aim to enhance intrusion detection techniques in IoT environments and promote the development of more effective antimalware solutions against cyber threats targeting IoT device systems.