Monitoring Phenology in the Temperate Grasslands of China from 1982 to 2015 and Its Relation to Net Primary Productivity

Author:

Zhang Chaobin,Zhang Ying,Wang Zhaoqi,Li Jianlong,Odeh Inakwu

Abstract

Both vegetation phenology and net primary productivity (NPP) are crucial topics under the background of global change, but the relationships between them are far from clear. In this study, we quantified the spatial-temporal vegetation start (SOS), end (EOS), and length (LOS) of the growing season and NPP for the temperate grasslands of China based on a 34-year time-series (1982–2015) normalized difference vegetation index (NDVI) derived from global inventory modeling and mapping studies (GIMMS) and meteorological data. Then, we demonstrated the relationships between NPP and phenology dynamics. The results showed that more than half of the grasslands experienced significant changes in their phenology and NPP. The rates of their changes exhibited spatial heterogeneity, but their phenological changes could be roughly divided into three different clustered trend regions, while NPP presented a polarized pattern that increased in the south and decreased in the north. Different trend zones’ analyses revealed that phenology trends accelerated after 1997, which was a turning point. Prolonged LOS did not necessarily increase the current year’s NPP. SOS correlated with the NPP most closely during the same year compared to EOS and LOS. Delayed SOS contributed to increasing the summer NPP, and vice versa. Thus, SOS could be a predictor for current year grass growth. In view of this result, we suggest that future studies should further explore the mechanisms of SOS and plant growth.

Funder

National key Research and Development project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3