Author:
Yue Lijun,Fan Houming,Zhai Chunxin
Abstract
This study proposes a formulation to optimize operational efficiency of a dual-trolley quay crane and automatic guided vehicles (AGVs) to reduce energy consumption at an automated container terminal. A two-phase model is used to minimize energy consumption during loading and discharging operations, as well as maximize the utilization rate of the AGVs, with consideration of relevant constraints such as the capacity of buffers for the quay crane (QC) and yard, the stability of vessel, the maximum endurance of an AGV, and the available laytime for handling. We propose a constrained partial enumeration strategy to construct quay crane schedules and a genetic algorithm to solve the AGV scheduling problem. Finally, Yangshan Phase IV automated container terminal’s data is used to verify the validity and applicability of the proposed model. The results of the tests provide evidence that the proposed method can improve energy efficiency.
Funder
National natural science foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献