Vegetation Response to Urban Landscape Spatial Pattern Change in the Yangtze River Delta, China

Author:

Cao YuORCID,Wang Yucen,Li Guoyu,Fang Xiaoqian

Abstract

Urbanization has destroyed and fragmented large amounts of natural habitats, resulting in serious consequences for urban ecosystems over past decades, especially in the rapidly urbanizing areas of developing countries. The Yangtze River Delta Urban Agglomeration, which has experienced the fastest socioeconomic development in China, was selected as the study area. To explore the relationship between urbanization and vegetation dynamics at the agglomeration scale, the spatiotemporal characteristics of urban expansion and vegetation variation of the study area were evaluated by landscape spatial analysis, regression analysis, and trend analysis. The results show that the urbanization level of the study area exhibited a continuous upward trend, with Shanghai as the regional core city, and the level of urbanization gradually decreased from the center towards the periphery of the urban agglomeration. The overall urban expansion presented obvious landscape spatial heterogeneity characteristics and the emergence of new cities and towns enhanced landscape connectedness and created a more aggregated urban agglomeration. Noticeable spatiotemporal differences of vegetation variation were observed from 2004 to 2013. Areas with relatively low vegetation coverage showed a steady growth trend, while those with higher vegetation coverage reported a significant decreasing trend. The spatial heterogeneity analysis of the vegetation trend demonstrated that vegetation degradation was a dominant and inevitable process across the study area. However, some parts of the urban sprawl area, especially at the periphery of the metropolis, may experience a greening trend rather than a browning trend, indicating that urbanization does not necessarily lead to large-scale vegetation degradation. Although urbanization poses a negative impact on vegetation and physical environments, urbanization has not yet reduced a large area of vegetation at the regional level.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3