A Random Forest-Based Approach to Map Soil Erosion Risk Distribution in Hickory Plantations in Western Zhejiang Province, China

Author:

Cheng ZhenlongORCID,Lu Dengsheng,Li Guiying,Huang Jianqin,Sinha Nibedita,Zhi Junjun,Li Shaojin

Abstract

Increasing agroforestry areas with improper management has produced serious environmental problems, such as soil erosion. It is necessary to rapidly predict the spatial distribution of such erosion risks in a large area, but there is a lack of approaches that are suitable for mountainous regions. The objective of this research was to develop an approach that can effectively employ remotely-sensed and ancillary data, to map soil erosion risks in an agroforestry ecosystem in a mountainous region. This research employed field survey data, soil-type maps, digital elevation model data, weather station data, and Landsat imagery, for extraction of potential variables. It used the random forest approach to identify eight key variables—slope, slope of slope, normalized difference greenness index at leaf-on season, soil organic matter, fractional vegetation at leaf-on season, fractional soil at leaf-off season, precipitation in June, and percent of soil clay—for mapping soil erosion risk distribution in hickory plantations in Western Zhejiang Province, China. The results showed that an overall accuracy of 89.8% was obtained for three levels of soil erosion risk. Approximately one-fourth of hickory plantations were at high-risk, requiring the owners or decision makers to take proper measures to reduce the soil erosion problem. This research provides a new approach to predict soil erosion risk, based on the primary variables that can be extracted directly from remotely-sensed data and ancillary data. This proposed approach will be valuable for other agroforestry and plantations, such as Torreya grandis, eucalyptus, and the rubber tree, that are playing important roles in improving economic conditions for the local farmers but face soil erosion problems.

Funder

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3