Application of Remote Sensing for Identifying Soil Erosion Processes on a Regional Scale: An Innovative Approach to Enhance the Erosion Potential Model

Author:

Polovina Siniša1ORCID,Radić Boris1ORCID,Ristić Ratko1,Milčanović Vukašin1ORCID

Affiliation:

1. Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia

Abstract

Soil erosion represents a complex ecological issue that is present on a global level, with negative consequences for environmental quality, the conservation and availability of natural resources, population safety, and material security, both in rural and urban areas. To mitigate the harmful effects of soil erosion, a soil erosion map can be created. Broadly applied in the Balkan Peninsula region (Serbia, Bosnia and Herzegovina, Croatia, Slovenia, Montenegro, North Macedonia, Romania, Bulgaria, and Greece), the Erosion Potential Method (EPM) is an empirical erosion model that is widely applied in the process of creating soil erosion maps. In this study, an innovation in the process of the identification and mapping of erosion processes was made, creating a coefficient of the types and extent of erosion and slumps (φ), representing one of the most sensitive parameters in the EPM. The process of creating the coefficient (φ) consisted of applying remote sensing methods and satellite images from a Landsat mission. The research area for which the satellite images were obtained and thematic maps of erosion processes (coefficient φ) were created is the area of the Federation of Bosnia and Herzegovina and the Brčko District (situated in Bosnia and Herzegovina). The Google Earth Engine (GEE) platform was employed to process and retrieve Landsat 7 Enhanced Thematic Mapper plus (ETM+) and Landsat 8 Operational Land Imager and Thermal Infrared Sensor (OLI/TIRS) satellite imagery over a period of ten years (from 1 January 2010 to 31 December 2020). The mapping and identification of erosion processes were performed based on the Bare Soil Index (BSI) and by applying the equation for fractional bare soil cover. The spatial–temporal distribution of fractional bare soil cover enabled the definition of coefficient (φ) values in the field. An accuracy assessment was conducted based on 190 reference samples from the field using a confusion matrix, overall accuracy (OA), user accuracy (UA), producer accuracy (PA), and the Kappa statistic. Using the confusion matrix, an OA of 85.79% was obtained, while UA ranged from 33% to 100%, and PA ranged from 50% to 100%. Applying the Kappa statistic, an accuracy of 0.82 was obtained, indicating a high level of accuracy. The availability of a time series of multispectral satellite images for each month is a crucial element in monitoring the occurrence of erosion processes of various types (surface, mixed, and deep) in the field. Additionally, it contributes significantly to decision-making, strategies, and plans in the domain of erosion control work, the development of plans for identifying erosion-prone areas, plans for defense against torrential floods, and the creation of soil erosion maps at local, regional, and national levels.

Funder

Technical Assistance for Preparation of Erosion Protection Plans and Technical Design Documentation for Flood Protecting Infrastructure for Selected Priority Areas in Bosnia and Herzegovina

Publisher

MDPI AG

Reference111 articles.

1. Land Use and Climate Change Impacts on Global Soil Erosion by Water (2015–2070);Borrelli;Proc. Natl. Acad. Sci. USA,2020

2. Ouyang, D., and Bartholic, J. (1997, January 19–23). Predicting Sediment Delivery Ratio in Saginaw Bay Watershed. Proceedings of the 22nd National Association of Environmental Professionals Conference, Orlando, FL, USA.

3. Assessment of Sediment Yield Using RS and GIS at Two Sub-Basins of Dez Watershed, Iran;Noori;Int. Soil Water Conserv. Res.,2016

4. Land Use in Ecuador: A Statistical Analysis at Different Aggregation Levels;Veldkamp;Agric. Ecosyst. Environ.,1998

5. Mapping Erosion Risk for Cultivated Soil in France;Montier;Catena,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3