Surface Nanostructuring during Selective Area Epitaxy of Heterostructures with InGaAs QWs in the Ultra-Wide Windows

Author:

Shamakhov Viktor,Nikolaev Dmitriy,Slipchenko Sergey,Fomin EvgeniiORCID,Smirnov AlexanderORCID,Eliseyev Ilya,Pikhtin Nikita,Kop`ev Peter

Abstract

Selective area epitaxy (SAE) is widely used in photonic integrated circuits, but there is little information on the use of this technique for the growth of heterostructures in ultra-wide windows. Samples of heterostructures with InGaAs quantum wells (QWs) on GaAs (100) substrates with a pattern of alternating stripes (100-μm-wide SiO2 mask/100-μm-wide window) were grown using metalorganic chemical vapour deposition (MOCVD). It was found that due to a local change in the growth rate of InGaAs QW in the window, the photoluminescence (PL) spectra measured from the edge to the center of the window exhibited maximum blueshifts of 14 and 19 meV at temperatures of 80 K and 300 K, respectively. Using atomic force microscopy, we have demonstrated that the surface morphologies of structures grown using standard epitaxy or SAE under identical MOCVD growth conditions correspond to a step flow growth with a step height of ~1.5 ML or a step bunching growth mode, respectively. In the structures grown with the use of SAE, a strong variation in the surface morphology in an ultra-wide window from its center to the edge was revealed, which is explained by a change in the local misorientation of the layer due to a local change in the growth rate over the width of the window.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3