Quantification of Nitric Oxide Concentration Using Single-Walled Carbon Nanotube Sensors

Author:

Meier Jakob,Stapleton Joseph,Hofferber Eric,Haworth Abigail,Kachman Stephen,Iverson Nicole M.

Abstract

Nitric oxide (NO), a free radical present in biological systems, can have many detrimental effects on the body, from inflammation to cancer. Due to NO’s short half-life, detection and quantification is difficult. The inability to quantify NO has hindered researchers’ understanding of its impact in healthy and diseased conditions. Single-walled carbon nanotubes (SWNTs), when wrapped in a specific single-stranded DNA chain, becomes selective to NO, creating a fluorescence sensor. Unfortunately, the correlation between NO concentration and the SWNT’s fluorescence intensity has been difficult to determine due to an inability to immobilize the sensor without altering its properties. Through the use of a recently developed sensor platform, systematic studies can now be conducted to determine the correlation between SWNT fluorescence and NO concentration. This paper explains the methods used to determine the equations that can be used to convert SWNT fluorescence into NO concentration. Through the use of the equations developed in this paper, an easy method for NO quantification is provided. The methods outlined in this paper will also enable researchers to develop equations to determine the concentration of other reactive species through the use of SWNT sensors.

Funder

National Institutes of Health

National Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3