Fluorescence Signal Enhancement in Antibody Microarrays Using Lightguiding Nanowires

Author:

Verardo DamianoORCID,Liljedahl Leena,Richter Corinna,Agnarsson Björn,Axelsson UlrikaORCID,Prinz Christelle N.,Höök FredrikORCID,Borrebaeck Carl A. K.,Linke HeinerORCID

Abstract

Fluorescence-based detection assays play an essential role in the life sciences and medicine. To offer better detection sensitivity and lower limits of detection (LOD), there is a growing need for novel platforms with an improved readout capacity. In this context, substrates containing semiconductor nanowires may offer significant advantages, due to their proven light-emission enhancing, waveguiding properties, and increased surface area. To demonstrate and evaluate the potential of such nanowires in the context of diagnostic assays, we have in this work adopted a well-established single-chain fragment antibody-based assay, based on a protocol previously designed for biomarker detection using planar microarrays, to freestanding, SiO2-coated gallium phosphide nanowires. The assay was used for the detection of protein biomarkers in highly complex human serum at high dilution. The signal quality was quantified and compared with results obtained on conventional flat silicon and plastic substrates used in the established microarray applications. Our results show that using the nanowire-sensor platform in combination with conventional readout methods, improves the signal intensity, contrast, and signal-to-noise by more than one order of magnitude compared to flat surfaces. The results confirm the potential of lightguiding nanowires for signal enhancement and their capacity to improve the LOD of standard diagnostic assays.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3