Estimating Sugarcane Yield in a Subtropical Climate Using Climatic Variables and Soil Water Storage

Author:

Viana Jessica Lima1ORCID,de Souza Jorge Luiz Moretti2,Hoshide Aaron Kinyu13ORCID,de Oliveira Ricardo Augusto4,de Abreu Daniel Carneiro15ORCID,da Silva Wininton Mendes6ORCID

Affiliation:

1. AgriSciences, Universidade Federal de Mato Grosso, Caixa Postal 729, Sinop 78550-970, MT, Brazil

2. Departamento de Solos e Engenharia Agrícola (DSEA), Campus Universitário de Curitiba, Universidade Federal do Paraná, Rua dos Funcionários, 1540, Curitiba 80035-050, PR, Brazil

3. College of Natural Sciences, Forestry and Agriculture, The University of Maine, Orono, ME 04469, USA

4. Departamento de Fitotecnia e Fitossanidade (DFF), Campus Universitário de Curitiba, Universidade Federal do Paraná, Rua dos Funcionários, 1540, Curitiba 80035-050, PR, Brazil

5. Instituto de Ciências Agrárias e Ambientais (ICAA), Campus Universitário de Sinop, Universidade Federal do Mato Grosso, Avenida Alexandre Ferronato, 1200, Sinop 78550-728, MT, Brazil

6. Empresa Mato-Grossense de Pesquisa, Assistência e Extensão Rural (EMPAER-MT), Centro Político Administrativo, Cuiabá 78049-903, MT, Brazil

Abstract

Brazil is the largest producer of sugarcane (Saccharum spp.) in the world, and this crop’s response to climate and soil water storage is essential for optimal management and genetic/yield improvements. The objective of our study was to build a multivariate model to estimate sugarcane yield in the subtropical conditions of the northwestern Paraná region using climatic and soil water storage variables. Observed yield data was used from experiments conducted at the Experimental Station of the Sugarcane Genetic Improvement Program of the Universidade Federal do Paraná. The sugarcane varieties RB72454, RB867515, RB966928, and RB036066 were analyzed in the 1998–2006, 2008, 2018 and 2019 harvest years. Stepwise multiple linear regression analysis with repeated cross-validation was developed to estimate sugarcane yield given climate and soil water storage variables for crop growth phases. The accumulated degree days in Phases I and II and soil water storage in Phase II of development significantly impacted sugarcane yield. The multiple linear regression model, with accumulated degree days and soil water storage in Phases I and II of development, successfully predicted sugarcane yield for analyzed varieties. Sugarcane production models like the one we developed can improve crop management for greater sustainability and climate change adaption in Brazil and other areas.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference66 articles.

1. CONAB (Companhia Nacional de Abastecimento) (2021, April 27). Acompanhamento da Safra Brasileira de Cana-de-Açúcar, Safra 2021/22—Segundo Levantamento, Brasília, Available online: https://www.conab.gov.br/info-agro/safras/cana.

2. Modelos de crescimento da cana-de-açúcar e sua parametrização—Revisão;Scarpari;Rev. Agric.,2012

3. RB036066—A sugarcane cultivar with high adaptability and yield stability to Brazilian South-Central region;Daros;Crop Breed. Appl. Biotechnol.,2018

4. Fatores que afetam a brotação e o perfilhamento da cana-de açúcar;Garcia;Vértices,2015

5. Spatio-temporal variability of sugarcane yield efficiency in the state of São Paulo, Brazil;Marin;Pesqui. Agropecu. Bras.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3