Predicting Sugarcane Yield via the Use of an Improved Least Squares Support Vector Machine and Water Cycle Optimization Model

Author:

Zhou Yifang1,Pan Mingzhang1,Guan Wei1,Fu Changcheng1,Su Tiecheng1

Affiliation:

1. State Key Laboratory for the Protection and Utilization of Subtropical Agricultural Biological Resources, College of Mechanical Engineering, Guangxi University, Nanning 530004, China

Abstract

As a raw material for sugar, ethanol, and energy, sugarcane plays an important role in China’s strategic material reserves, economic development, and energy production. To guarantee the sustainable growth of the sugarcane industry and boost sustainable energy reserves, it is imperative to forecast the yield in the primary sugarcane production regions. However, due to environmental differences caused by regional differences and changeable climate, the accuracy of traditional models is generally low. In this study, we counted the environmental information and yield of the main sugarcane-producing areas in the past 15 years, adopted the LSSVM algorithm to construct the environmental information and sugarcane yield model, and combined it with WCA to optimize the parameters of LSSVM. To verify the validity of the proposed model, WCA-LSSVM is applied to two instances based on temporal differences and geographical differences and compared with other models. The results show that the accuracy of the WCA-LSSVM model is much better than that of other yield prediction models. The RMSE of the two instances are 5.385 ton/ha and 5.032 ton/ha, respectively, accounting for 7.65% and 6.92% of the average yield. And the other evaluation indicators MAE, R2, MAPE, and SMAPE are also ahead of the other models to varying degrees. We also conducted a sensitivity analysis of environmental variables at different growth stages of sugarcane and found that in addition to the main influencing factors (temperature and precipitation), soil humidity at different depths had a significant impact on crop yield. In conclusion, this study presents a highly precise model for predicting sugarcane yield, a useful tool for planning sugarcane production, enhancing yield, and advancing the field of agricultural production prediction.

Funder

Guangxi University Sugarcane Research Fund

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3