Geotechnical Properties and Stabilization Mechanism of Nano-MgO Stabilized Loess

Author:

Chen Shufeng1,Ni Pengfei1,Sun Zhao2,Yuan Kekuo1ORCID

Affiliation:

1. Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an 710123, China

2. Xi’an China Highway Geotechnical Engineering Co., Ltd., Xi’an 710075, China

Abstract

This study focused on the utilization of nano-MgO as an energy-saving and eco-friendly stabilizer to improve the engineering performance of loess. To this end, loess samples at various nano-MgO contents and curing times were prepared, and then standard compaction, consistency limits, and unconfined compression tests were performed. The achieved results demonstrated that adding nano-MgO increased the liquid limit, plastic limit, and optimum water content of loess, while it decreased the plastic index and maximum dry density. The unconfined compressive strength (UCS) presented an increasing trend with curing time and a “rise-fall” trend with the addition of nano-MgO. At the optimum nano-MgO content of 2%, about 72% UCS gain was to be expected with 28 days of curing. The variation of the deformation modulus was similar to that of UCS, and the strain at failure presented an opposite trend. Empirical models for these properties were formulated and validated by literature data. Finally, from NMR analyses, the improving mechanism was found to be nano-MgO induced water transformation from free water to bound water.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3