Different Stages of Aquatic Vegetation Succession Driven by Environmental Disturbance in the Last 38 Years

Author:

Yu Hongwei,Qi Weixiao,Liu Chunhua,Yang Lei,Wang Ligong,Lv Tian,Peng Jianfeng

Abstract

In recent years, investigating the trend of aquatic plant diversity in response to different disturbance events has received increasing interest. However, there is limited knowledge of the different stages of aquatic vegetation succession over a long period in eutrophic lakes. In this study, we analyzed aquatic plant species richness and its relation to the physical and chemical characteristics of water in Chenghai Lake for the period of 1980–2018. This study shows that the richness and distribution of aquatic vegetation in Chenghai Lake are related to chlorophyll-a concentration, dissolved nutrients, base cations, and micronutrients. The results show that the long-term succession of aquatic plants in this lake classified in different stages: (I) A peak in species richness occurred at an intermediate stage that lasted from 1980 to 1992, and this was caused by more aquatic species being able to coexist since the competition for resources was lower; (II) after 26 years of secondary succession (1992–2018), the diversity and distribution area of aquatic plants gradually declined because pioneer species or human activities may have altered habitat conditions to render habitats less beneficial to pioneer species and more suitable for new aquatic plant species. Thus, species diversity and growth performance of aquatic plants in their communities may be useful indicators of Chenghai Lake’s trophic status, especially during the transition period from a mesotrophic lake to a eutrophic one.

Funder

Special Foundation of National Science and Technology Basic Research

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3