Fundamental processes within natural and constructed wetland ecosystems: short-term versus long-term objectives

Author:

Wetzel R.G.1

Affiliation:

1. Department of Environmental Sciences and Engineering, The University of North Carolina, Chapel Hill, North Carolina 27599-7431, USA

Abstract

Use of wetland ecosystems for water pollution control consists essentially of sustained induced disturbances as pollutants are loaded to complex biological communities. Objectives are to maximize pollutant loading, incorporation, and retention while maintaining highest levels of community metabolism and minimal alteration of community structure. Several basic processes are emphasized: (a) macrophyte productivity in relation to shoot:root ratios, and nutrient availability; (b) macrophyte life history strategies, succession, and biodiversity under constant pollutant stress; (c) importance of standing dead and particulate detritus; (d) functions and controlling mechanisms of heterotrophic and autotrophic periphyton in pollutant retention and recycling; (e) coupling of microbial metabolism to macrophyte retention of pollutants; (f) gaseous losses to the atmosphere; (g) losses of dissolved organic matter and its utilization; and (h) water losses by evapotranspiration and effects on wetland efficacy. Short-term wetland removal efficiencies are confounded by massive variations in retentive capacities diurnally, seasonally, and spatially, in exceeding physiological tolerance levels, and in species succession. Problems of channelization, altered microhydrology, and assimilation/retention are major in natural and non-engineered ecosystems. Wetlands are highly ephemeral and variable in their capabilities for sequestering and retention of nutrients and other pollutants.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3