Interactive Vehicle Trajectory Prediction for Highways Based on a Graph Attention Mechanism

Author:

Song Zhenyu1,Qian Yubin1

Affiliation:

1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

Abstract

Precise trajectory prediction is pivotal for autonomous vehicles operating in real-world traffic conditions, and can help them make the right decisions to ensure safety on the road. However, state-of-the-art approaches consider limited information about the historical movements of vehicles. On highways, drivers make their next judgments according to the behavior of the ambient vehicles. Thus, vehicles need to consider temporal and spatial interactions to reduce the risk of future collisions. In the current work, a trajectory prediction method is put forward in accordance with a graph attention mechanism. We add the absolute and relative motion information of vehicles to the input of the model to describe the vehicles’ past motion states more accurately. LSTM models are employed to process the historical motion information of vehicles, as well as the temporal correlations in interactions. The graph attention mechanism is applied to capture the spatial correlations between vehicles. Utilizing a decoder rooted in an LSTM framework, the future trajectory distribution is generated. Evaluation on the NGSIM US-101 and I-80 datasets substantiates the superiority of our approach over existing state-of-the-art algorithms. Moreover, the predictions of our model are analyzed.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3