Development and Experimental Study of a Mixed-Mode Vibration Isolator Using Magnetorheological Elastomer

Author:

Liu Qianjie12,Guo Zhirong12,Liu Wei3,Li Gang12,Jin Shengzhi12,Yu Lei12,Hu Guoliang12ORCID

Affiliation:

1. School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China

2. Key Laboratory of Vehicle Intelligent Equipment and Control of Nanchang City, East China Jiaotong University, Nanchang 330013, China

3. Vehicle Performance and Testing Department, Jiangling Motor Corporation Limited Company, Nanchang 330200, China

Abstract

This paper proposes a mixed-mode (combining shear and squeeze working modes) vibration isolator using magnetorheological elastomer (MRE), which enables the isolator to have a larger working area and better isolation performance by combining the working modes of the MRE. Firstly, based on the magnetorheological effect working principle of the MRE, the material selection and dimensional parameters of each component are determined through structural design and magnetic circuit calculation. On this basis, magnetic field simulation is conducted using Maxwell 16.0 software to analyze the distribution of magnetic field lines and magnetic induction in the working area. Simultaneously, equivalent stiffness and equivalent damping models are established to explore the variation of vibration response with external current and excitation frequency conditions. Finally, a vibration isolation experimental platform is built to test the mixed-mode MRE isolator. The experimental results are basically consistent with the simulation modeling results. The experimental results showed that when the external excitation is in the frequency range of 16 Hz, effective semi-active vibration isolation control could be achieved by applying different current inputs. The isolation effect of the system is difficult to effectively control using current input when the external excitation is at high frequency. These results validate the rationality and feasibility of the mixed-mode MRE isolator structure, which provides a good reference for the design of MRE isolators.

Funder

National Natural Science Foundation of China

Key R&D project of Jiangxi Province of China

Natural Science Foundation Project of Jiangxi Province

Key Program for International S&T Cooperation Project of Jiangxi Province of China

Double Height Project of Jiangxi Province Human Resources and Social Security Department

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3