Abstract
The structural properties of phosphor materials, such as their grain size distribution (GSD), affect their overall optical emission performance. In the widely used gadolinium oxysulfide (Gd2O2S) host material, the type of activator is one significant parameter that also changes the GSD of the powder phosphor. For this reason, in this study, different phosphors samples of Gd2O2S:Tb, Gd2O2S:Eu, and Gd2O2S:Pr,Ce,F, were analyzed, their GSDs were experimentally determined using the scanning electron microscopy (SEM) technique, and thereafter, their optical emission profiles were investigated using the LIGHTAWE Monte Carlo simulation package. Two sets of GSDs were examined corresponding to approximately equal mean particle size, such as: (i) 1.232 μm, 1.769 μm and 1.784 μm, and (ii) 2.377 μm, 3.644 μm and 3.677 μm, for Tb, Eu and Pr,Ce,F, respectively. The results showed that light absorption was almost similar, for instance, 25.45% and 8.17% for both cases of Eu dopant utilizing a thin layer (100 μm), however, given a thicker layer (200 μm), the difference was more obvious, 22.82%. On the other hand, a high amount of light loss within the phosphor affects the laterally directed light quanta, which lead to sharper distributions and therefore to higher resolution properties of the samples.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference29 articles.
1. Scintillation detectors for X-Rays;Nikl;Meas. Sci. Technol.,2006
2. Inorganic scintillators in medical imaging;Van Eijk;Phys. Med. Biol.,2002
3. Image quality assessment of a CMOS/Gd2O2S:Pr,Ce,F X-Ray sensor;Michail;J. Sens.,2015
4. Scintillator-based flat-panel X-ray imaging detectors;Granfors;J. Soc. Inf. Disp.,2009
5. Linardatos, D., Koukou, V., Martini, N., Konstantinidis, A., Bakas, A., Fountos, G., Valais, I., and Michail, C. On the response of a micro non-destructive testing X-ray detector. Materials, 2021. 14.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献