A Data Augmentation-Based Evaluation System for Regional Direct Economic Losses of Storm Surge Disasters

Author:

Sun HaiORCID,Wang Jin,Ye Wentao

Abstract

The accurate prediction of storm surge disasters’ direct economic losses plays a positive role in providing critical support for disaster prevention decision-making and management. Previous researches on storm surge disaster loss assessment did not pay much attention to the overfitting phenomenon caused by the data scarcity and the excessive model complexity. To solve these problems, this paper puts forward a new evaluation system for forecasting the regional direct economic loss of storm surge disasters, consisting of three parts. First of all, a comprehensive assessment index system was established by considering the storm surge disasters’ formation mechanism and the corresponding risk management theory. Secondly, a novel data augmentation technique, k-nearest neighbor-Gaussian noise (KNN-GN), was presented to overcome data scarcity. Thirdly, an ensemble learning algorithm XGBoost as a regression model was utilized to optimize the results and produce the final forecasting results. To verify the best-combined model, KNN-GN-based XGBoost, we conducted cross-contrast experiments with several data augmentation techniques and some widely-used ensemble learning models. Meanwhile, the traditional prediction models are used as baselines to the optimized forecasting system. The experimental results show that the KNN-GN-based XGBoost model provides more precise predictions than the traditional models, with a 64.1% average improvement in the mean absolute percentage error (MAPE) measurement. It could be noted that the proposed evaluation system can be extended and applied to the geography-related field as well.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3