Evaluation of Tropical Cyclone Disaster Loss Using Machine Learning Algorithms with an eXplainable Artificial Intelligence Approach

Author:

Liu Shuxian1,Liu Yang1,Chu Zhigang2ORCID,Yang Kun1,Wang Guanlan1,Zhang Lisheng1,Zhang Yuanda34

Affiliation:

1. National Meteorological Center, China Meteorological Administration, Beijing 100081, China

2. Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China

4. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China

Abstract

In the context of global warming, tropical cyclones (TCs) have garnered significant attention as one of the most severe natural disasters in China, particularly in terms of assessing the disaster losses. This study aims to evaluate the TC disaster loss (TCDL) using machine learning (ML) algorithms and identify the impact of specific feature factors on the prediction of model with an eXplainable Artificial Intelligence (XAI) approach, SHapley Additive exPlanations (SHAP). The results show that LightGBM outperforms Random Forest (RF), Support Vector Machine (SVM), and Naive Bayes (NB) for estimating the TCDL grades, achieving the highest accuracy value of 0.86. According to the SHAP values, the three most important factors in the LightGBM classifier model are proportion of stations with rainfall exceeding 50 mm (ProRain), maximum wind speed (MaxWind), and maximum daily rainfall (MaxRain). Specifically, in the estimation of high TCDL grade, events characterized with MaxWind exceeding 30 m/s, MaxRain exceeding 200 mm, and ProRain exceeding 30% tend to exhibit a higher susceptibility to TC disaster due to positive SHAP values. This study offers a valuable tool for decision-makers to develop scientific strategies in the risk management of TC disaster.

Funder

National Natural Science Foundation of China

Youth Fund Project of the National Meteorological Center

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3