Shaping Sustainable Urban Environments by Addressing the Hydro-Meteorological Factors in Landslide Occurrence: Ciuperca Hill (Oradea, Romania)

Author:

Morar Cezar,Lukić Tin,Basarin Biljana,Valjarević AleksandarORCID,Vujičić MiroslavORCID,Niemets Lyudmila,Telebienieva Ievgeniia,Boros LajosORCID,Nagy Gyula

Abstract

Romania is one of the countries severely affected by numerous natural hazards, where landslides constitute a very common geomorphic hazard with strong economic and social impacts. The analyzed area, known as the “Ciuperca Hill”, is located in Oradea (NW part of Romania) and it has experienced a number of landsliding events in previous years, which have endangered anthropogenic systems. Our investigation, focused on the main causal factors, determined that landslide events have rather complex components, reflected in the joint climatological characteristics, properties of the geological substrate, and human activity that further contributed to the intensive change of landscape and acceleration of slope instability. Analysis of daily precipitation displays the occurrence and intensive distribution between May and September. Higher values of rainfall erosivity (observed for the 2014–2017 period), are occurring between April and August. Erosivity density follows this pattern and indicates high intensity events from April until October. SPI index reveals the greater presence of various wet classes during the investigated period. Geological substrate has been found to be highly susceptible to erosion and landsliding when climatological conditions are suitable. Accelerated urbanization and reduced vegetation cover intensified slope instability. The authors implemented adequate remote-sensing techniques in order to monitor and assess the temporal changes in landslide events at local level. Potential solutions for preventative actions are given in order to introduce and conduct qualitative mitigation strategies for shaping sustainable urban environments. Results from this study could have implications for mitigation strategies at national, regional, county, and municipality levels, providing knowledge for the enhancement of geohazard prevention and appropriate response plans.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3