Improving the Analysis of E-Cigarette Emissions: Detecting Human “Dry Puff” Conditions in a Laboratory as Validated by a Panel of Experienced Vapers

Author:

Visser Wouter F.,Krüsemann Erna J. Z.,Klerx Walther N. M.,Boer Karin,Weibolt Naomi,Talhout Reinskje

Abstract

Introduction: E-cigarette product regulation requires accurate analyses of emissions. User behavior, including device power setting selection, should be mimicked closely when generating e-cigarette emissions in a laboratory. Excessively high power settings result in an adverse burnt off-taste, called “dry puff flavor”. This should be avoided because it results in an overestimation of toxicant levels (especially certain carbonyls). This study presents a human volunteer-validated approach to detect excessively high e-cigarette power settings by HPLC-DAD (high-performance liquid chromatography—diode array detection) carbonyl analysis. Methods: Thirteen experienced e-cigarette users evaluated whether the “dry puff flavor” was present at different power settings (10 W–25 W), recording their assessment on a 100-unit visual analog scale (VAS). They assessed e-cigarettes equipped with 1.2 Ω or 1.6 Ω coils containing menthol, vanilla or fruit-flavored e-liquids. In a machine-vaping experiment, emissions from the same liquid/coil/power setting combinations were subjected to HPLC-DAD analysis of dinitrophenol hydrazine (DNPH)-derivatized carbonyls, such as lactaldehyde and formaldehyde. A simple algorithm, based on the cutoff values for each marker, was applied to relate the dry puff flavor (as assessed by the human volunteers) to the laboratory measurements. Results: Eleven carbonyl compounds were found to agree with the human assessments. Based on the amounts of these compounds in the emissions, the dry-puff flavor did match at all combinations of e-liquids and coils examined. Dry-puff flavor was observed at different power levels with the different liquids tested. Conclusions: The described method can detect dry puff conditions and is therefore a useful tool to ensure user-relevant conditions in laboratory analyses of e-cigarette emissions. Implications: This study improves the chemical analysis of e-cigarette emissions. It offers a method to select an appropriate (i.e., user-relevant) power setting for e-cigarettes, which is a critical parameter for emission analysis and therefore important for regulatory purposes and risk assessments. Compared to the approach of using human volunteers to select appropriate power settings for different products by taste, the described method is cheaper, faster, more practical and more ethical.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3