Determination of chemical constituent yields in e-cigarette aerosol using partial and whole pod collections, a comparative analysis

Author:

Jameson J. Brian,Wang Jiaming,Bailey Patrick C.,Oldham Michael J.,Smith Cameron R.,Jeong Lena N.,Cook David K.,Bates Austin L.,Ullah Sifat,Pennington Alexander S. C.,Gillman I. Gene

Abstract

Literature reports the chemical constituent yields of electronic nicotine delivery systems (ENDS) aerosol collected using a range of aerosol collection strategies. The number of puffs to deplete an ENDS product varies widely, but collections often consist of data from the first 50–100 puffs. However, it is not clear whether these discrete puff blocks are representative of constituent yields over the life of a pod. We aimed to assess the effect of differing aerosol collection strategies on reported yields for select chemical constituents in the aerosol of closed pod-based ENDS products. Constituents analyzed were chosen to reflect important classes of compounds from the Final Premarket Tobacco Product Application Guidance. Yields were normalized to total device mass loss (DML). Collection strategies that consisted of partial pod collection were valid for determining yields of constituents whose DML normalized yields were consistent for the duration of pod life. These included primary aerosol constituents, such as propylene glycol, glycerol, and nicotine, and whole pod yields could be determined from initial puff blocks. However, changes were observed in the yields of some metals, some carbonyl compounds, and glycidol over pod life in a chemical constituent and product dependent manner. These results suggest that collection strategies consisting of initial puff block collections require validation per chemical constituent/product and are not appropriate for chemical constituents with variable yields over pod life. Whole pod collection increased sensitivity and accuracy in determining metal, carbonyl, and glycidol yields compared to puff block-based collection methodologies for all products tested.

Publisher

Frontiers Media SA

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3