Abstract
The enhancement of physical activity is highly correlated with the conditions of the built environment. Walking is considered to be a fundamental daily physical activity, which requires an appropriate environment. Therefore, the barriers of the built environment should be identified and addressed. Barriers can act as external stimuli for pedestrians, so pedestrians may diversely respond to them. Based on this consideration, this study examines the feasibility of information-entropy-based behavioral analysis for the detection of environmental barriers. The physical responses of pedestrians were collected using an inertial measurement unit (IMU) sensor in a smartphone. After the acquired data were converted to behavioral probability distributions, the information entropy of each grid cell was calculated. The grid cells whereby the participants indicated that environmental barriers were present yielded relatively high information entropy values. The findings of this study will facilitate the design of more pedestrian-friendly environments and the development of diverse approaches that utilize citizens for monitoring the built environment.
Funder
R&D Program for Forest Science Technology
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献