Feasibility of DRNN for Identifying Built Environment Barriers to Walkability Using Wearable Sensor Data from Pedestrians’ Gait

Author:

Kim HyunsooORCID

Abstract

Identifying built environment barriers to walkability is the first step toward monitoring and improving our walking environment. Although conventional approaches (i.e., surveys by experts or pedestrians, walking interviews, etc.) to identify built environment barriers have contributed to improving the walking environment, these approaches may require time and effort. To address the limitations of conventional approaches, wearable sensing technologies and data analysis techniques have recently been adopted in the investigation of the built environment. Among various wearable sensors, an inertial measurement unit (IMU) can continuously capture gait-related data, which can be used to identify built environment barriers to walkability. To propose a more efficient method, the author adopts a cascaded bidirectional and unidirectional long short-term memory (LSTM)-based deep recurrent neural network (DRNN) model for classifying human gait activities (normal and abnormal walking) according to walking environmental conditions (i.e., normal and abnormal conditions). This study uses 101,607 gait data collected from the author’s previous study for training and testing a DRNN model. In addition, 31,142 gait data (20 participants) have been newly collected to validate whether the DRNN model is feasible for newly added gait data. The gait activity classification results show that the proposed method can classify normal gaits and abnormal gaits with an accuracy of about 95%. The results also indicate that the proposed method can be used to monitor environmental barriers and improve the walking environment.

Funder

Dankook university

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep-Learning-Based Approach for Automated Detection of Irregular Walking Surfaces for Walkability Assessment with Wearable Sensor;Applied Sciences;2023-12-07

2. Advances in Data Analysis for Wearable Sensors;Applied Sciences;2023-04-28

3. Continuous Authentication Using Gait Patterns;Proceedings of the 2nd International Conference on Signal and Data Processing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3