Singular Configuration Analysis and Singularity Avoidance with Application in an Intelligent Robotic Manipulator

Author:

Wang Helin,Zhou Ziqiang,Zhong Xianyou,Chen Qijun

Abstract

Recently, robotic sensor systems have gained more attention annually in complex system sense strategies. The robotic sensors sense the information from itself and the environment, and fuse information for the use of perception, decision, planning, and control. As an important supplement to traditional industrial robots, co-bots (short for co-working robots) play an increasingly vital role in helping small and medium-sized enterprises realize intelligent manufacturing. They have high flexibility and safety so that they can assist humans to complete highly repetitive and high-precision work. In order to maintain robot safe operation in the increasing complex working environment and human–computer intelligent interactive control, this paper is concerned with the problem of applicant accuracy analysis and singularity avoidance for co-bots. Based on the dynamic model with load and torque sensors, which is used to detect the external force at the end of the robot, this paper systematically analyzes the causes of singularity phenomenon in the robot motion control. The inverse solution is obtained by analytical method and numerical method, respectively. In order to ensure the smooth and safe operation in the whole workspace, it is necessary for a robot to avoid singularity. Singularity avoidance schemes are utilized for different control tasks, including point-to-point control and continuous path control. Corresponding simulation experiments are designed to verify the effectiveness of different evasion schemes, in which the advantages and disadvantages are compared and analyzed.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3