On the Feasibility of Rovibrational Laser Cooling of Radioactive RaF+ and RaH+ Cations

Author:

Isaev Timur A.,Wilkins Shane G.ORCID,Athanasakis-Kaklamanakis MichailORCID

Abstract

Polar radioactive molecules have been suggested to be exceptionally sensitive systems in the search for signatures of symmetry-violating effects in their structure. Radium monofluoride (RaF) possesses an especially attractive electronic structure for such searches, as the diagonality of its Franck-Condon matrix enables the implementation of direct laser cooling for precision experiments. To maximize the sensitivity of experiments with short-lived RaF isotopologues, the molecular beam needs to be cooled to the rovibrational ground state. Due to the high kinetic energies and internal temperature of extracted beams at radioactive ion beam (RIB) facilities, in-flight rovibrational cooling would be restricted by a limited interaction timescale. Instead, cooling techniques implemented on ions trapped within a radiofrequency quadrupole cooler-buncher can be highly efficient due to the much longer interaction times (up to seconds). In this work, the feasibility of rovibrationally cooling trapped RaF+ and RaH+ cations with repeated laser excitation is investigated. Due to the highly diagonal nature between the ionic ground state and states in the neutral system, any reduction of the internal temperature of the molecular ions would largely persist through charge-exchange without requiring the use of cryogenic buffer gas cooling. Quasirelativistic X2C and scalar-relativistic ECP calculations were performed to calculate the transition energies to excited electronic states and to study the nature of chemical bonding for both RaF+ and RaH+. The results indicate that optical manipulation of the rovibrational distribution of trapped RaF+ and RaH+ is unfeasible due to the high electronic transition energies, which lie beyond the capabilities of modern laser technology. However, more detailed calculations of the structure of RaH+ might reveal possible laser-cooling pathways.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Condensed Matter Physics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3