Vehicle Re-Identification Based on UAV Viewpoint: Dataset and Method

Author:

Lu MingmingORCID,Xu YongchuanORCID,Li HaifengORCID

Abstract

High-resolution remote sensing images bring a large amount of data as well as challenges to traditional vision tasks. Vehicle re-identification (ReID), as an essential vision task that can utilize remote sensing images, has been widely used in suspect vehicle searches, cross-border vehicle tracking, traffic behavior analysis, and automatic toll collection systems. Although there have been a large number of studies on vehicle ReID, most of them are based on fixed surveillance cameras and do not take full advantage of high-resolution remote sensing images. Compared with images collected by fixed surveillance cameras, high-resolution remote sensing images based on Unmanned Aerial Vehicles (UAVs) have the characteristics of rich viewpoints and a wide range of scale variations. These characteristics bring richer information to vehicle ReID tasks and have the potential to improve the performance of vehicle ReID models. However, to the best of our knowledge, there is a shortage of large open-source datasets for vehicle ReID based on UAV views, which is not conducive to promoting UAV-view-based vehicle ReID research. To address this issue, we construct a large-scale vehicle ReID dataset named VRU (the abbreviation of Vehicle Re-identification based on UAV), which consists of 172,137 images of 15,085 vehicles captured by UAVs, through which each vehicle has multiple images from various viewpoints. Compared with the existing vehicle ReID datasets based on UAVs, the VRU dataset has a larger volume and is fully open-source. Since most of the existing vehicle ReID methods are designed for fixed surveillance cameras, it is difficult for these methods to adapt to UAV-based vehicle ReID images with multi-viewpoint and multi-scale characteristics. Thus, this work proposes a Global Attention and full-Scale Network (GASNet) for the vehicle ReID task based on UAV images. To verify the effectiveness of our GASNet, GASNet is compared with the baseline models on the VRU dataset. The experiment results show that GASNet can achieve 97.45% Rank-1 and 98.51% mAP, which outperforms those baselines by 3.43%/2.08% improvements in terms of Rank-1/mAP. Thus, our major contributions can be summarized as follows: (1) the provision of an open-source UAV-based vehicle ReID dataset, (2) the proposal of a state-of-art model for UAV-based vehicle ReID.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast UAV- Image-based Person Re-Identification at the Edge;2024 IEEE International Conference on Contemporary Computing and Communications (InC4);2024-03-15

2. A novel dual-pooling attention module for UAV vehicle re-identification;Scientific Reports;2024-01-23

3. Multi-Scale Image- and Feature-Level Alignment for Cross-Resolution Person Re-Identification;Remote Sensing;2024-01-10

4. A Deep Learning Approach for Unifying Object Re-Identification and Cross-view Geo-localization on Autonomous UAVs;2023 12th International Conference on Control, Automation and Information Sciences (ICCAIS);2023-11-27

5. A Real-Time Semantic Segmentation Method Based on STDC-CT for Recognizing UAV Emergency Landing Zones;Sensors;2023-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3